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A theoretical model is presented for the propagation of long, weakly nonlinear water 
waves along a channel bounded by sloping sidewalls, on the assumption that 
h,/w -4 1, where 2w is the channel width and h, is the uniform water depth away from 
the sidewalls. Owing to the non-rectangular channel cross-section, waves are three- 
dimensional in general, and the Kadomtsev-Petviashvili (KP) equation applies. 
When the sidewall slope is 0(1), an asymptotic wall boundary condition is derived, 
which involves a single parameter, d = A / h &  where A is the area under the depth 
profile. This model is used to discuss the development of an undular bore in a channel 
with trapezoidal cross-section. The theoretical predictions are in quantitative 
agreement with experiments and confirm the presence of significant three- 
dimensional effects, not accounted for by previous theories. Furthermore, the 
response due to transcritical forcing is investigated for 0 < d < I ; the nature of the 
generated three-dimensional upstream disturbance depends on d crucially, and is 
related to the three-dimensional structure of periodic nonlinear waves of permanent 
form. Finally, in an Appendix, the appropriate asymptotic wall boundary condition 
is derived for the case when the sidewall slope is O(h,/w)i. 

1. Introduction 
Long-crested, weakly nonlinear water waves can be modelled by the Korteweg-de 

Vries (KdV) equation in various contexts. The simplest case is, that of entirely 
straight-crested waves propagating along a channel of uniform rectangular cross- 
section (see, for example, Whitham 1974, $13.11). On the further assumption that 
the channel width is comparable with the water depth, the KdV equation also 
describes long waves in a uniform channel of arbitrary cross-section (Peregrine 1968 ; 
Fenton 1973). In this instance, the wave disturbance is quasi-two-dimensional ; a 
relatively small spanwise variation in the wave elevation is present, but the wave 
crests remain straight, and the KdV equation is still valid to leading order. 
Experimental confirmation of the theory was provided by Peregrine (1969) for 
solitary waves in channels with trapezoidal cross-section. 

Peregrine (1968) noted, however, that the KdV theory breaks down when the 
channel width is much larger than the water depth ; as the channel width is increased, 
spanwise variations become relatively large, giving rise to non-uniformities in the 
perturbation expansion. This is consistent with the earlier experimental observations 
of Sandover & Taylor (1962), who studied the development of undular bores in 
trapezoidal channels of moderately large width - about six to seven times the water 
depth. They pointed attention to the three-dimensional structure of wave 
disturbances ; in particular, the presence of wave-crest curvature across the channel 
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and the tendency for waves to have irregular forms (except a t  very low discharge) 
cannot be explained by the KdV theory (Fenton 1973). 

In this paper, a theoretical model is presented for long waves propagating along 
a channel of uniform non-rectangular cross-section, allowing for the presence of 
significant three-dimensional effects. The channel is assumed to be wide, h,/w -4 1,  
where 2w is the channel width at  the undisturbed free surface and h, is the constant 
water depth away from the sidewalls. The approximate governing equations and 
boundary conditions are derived from the full water-wave theory, using matched 
asymptotic expansions? : the main body of fluid, away from the sloping boundaries, 
forms an ‘outer ’ region where waves satisfy the Kadomtsev-Petviashvili (KP) 
equation, so that three-dimensional effects balance with nonlinear and dispersive 
effects; close to each sidewall, where the depth varies, there is an ‘inner’ region. 
Matching between the corresponding inner and outer expansions gives the 
appropriate asymptotic boundary condition for the KP equation at  each sidewall, 
depending on the relative size of the inner region : when the wall slope is O( l),  as in 
the experiments of Sandover & Taylor (1962), this boundary condition involves only 
a single parameter, d = A/h& A being the area under the depth profile; for wall 
slopes O(h,/w)i, the inner region is relatively thicker, and the appropriate boundary 
condition obtains a different form which depends more seriously on the details of the 
depth profile, as discussed in the Appendix. Finally, when the wall slope is very 
gentle, O(ho/w), there is no distinction between an inner and outer region any more, 
and one can use a KP equation with variable coefficients to account for depth 
variations ; this possiblility has been discussed in a number of recent studies (see, for 
example, Kirby, Philip & Vengayil 1987; David, Levi & Winternitz 1989) and will 
not be considered here. 

The present theory is used to discuss the development of an undular bore in a 
channel with trapezoidal cross-section, modelling the experimental set-up of 
Sandover & Taylor (1962). The theoretical predictions confirm the presence of 
significant three-dimensional effects, and are in quantitative agreement with 
experiment until wave breaking, which is not taken into account in the theory, 
occurs. In addition, the response to a slender pressure distribution, moving with 
transcritical speed at  the free surface along the channel centreline is investigated. In 
a channel with vertical sidewalls, the corresponding problem has been studied in 
detail, both theoretically and experimentally, in recent years (see, for example, Wu 
1987; Akylas 1988), and it is now known that periodic generation of straight- 
crested solitons takes place upstream. It is of interest, then, to see how sloping 
sidewalls affect this upstream response. Not surprisingly, the upstream disturbance 
is found to be three-dimensional in general; however, quite remarkably, as the 
parameter d is increased (0 < d < l) ,  the regular, periodic form of the upstream 
response found in a channel with vertical sidewalls (d = 0) disappears, and then 
reappears, while the individual waves acquire a far more complicated, three- 
dimensional structure. This loss and reappearance of uniformity in the upstream 
response seems to be related to the three-dimensional structure of periodic nonlinear 
waves of permanent form. 

t Matching between an ‘edge layer’ close to a beach and an ‘outer’ shallow sea was previously 
used by Sugimoto 6 Kakutani (1984) to describe the normal incidence of a soliton. 
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FIGURE 1. Channel cross-section. 

2. Formulation 
Consider an infinitely long channel of uniform cross-section. Cartesian coordinates 

are chosen such that y is directed vertically upward, x is along, and z is across the 
channel. The undisturbed free surface is at  y = 0,O < z < 2w, where 2w is the channel 
width. The rigid bottom is at  y = -h(z);  moreover, the cross-section is assumed to 
be such that the undisturbed water depth is a constant h, everywhere, except in the 
vicinity of the sidewalls where it decreases from h, to  zero over a distance O(L) with 
L << w (see figure 1). 

In setting up our asymptotic theory, it proves most economical to consider the 
generation of long waves by a pressure distribution moving with transcritical speed 
along the channel at the free surface; the propagation of free waves can be 
formulated as a special case, In the frame of reference following the applied pressure 
p ,  a uniform current of speed U exists in the water. Assuming inviscid, irrotational 
flow, gravity waves are described in terms of the free-surface elevation y = ~(z, z, t )  
and the velocity potential 0 = Ux-$Uat+ $(x, y, z, t )  ; as usual, the perturbation 
potential $ satisfies Laplace’s equation in the fluid and the familiar kinematic and 
dynamic boundary conditions hold at the free surface. Dimensionless (primed) 
variables are introduced as follows : 

x = lx’, y = h,y’, z = h o d ,  t = , 7 = a f ,  h = h,h’, 

and then, for convenience, the primes are dropped; here g is the gravitational 
acceleration, p is the water density, c, = (gh,); is the linear long-wave speed on water 
of uniform depth h,, I is a typical wavelength and a is a typical wave amplitude. Note 
that, apart from the Froude number F = U/co, the long-wave parameter p = ho/Z, 
and the nonlinearity parameter E = a/h,, two additional independent dimensionless 
parameter arise : 
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p is a measure of the slope of the channel sidewalls, while a measures the channel 
width relative to the water depth and, as will be seen shortly, also controls three- 
dimensional effects. 

Attention is focused now on weakly nonlinear, long waves propagating along a 
wide channel; thus, the parameters e ,  p and a are taken to be small (e,p, (T 4 1). 
Moreover, as already indicated, it is assumed that the channel cross-section is such 
that depth variations are confined close to the sidewalls (u/p = L/w < i), which then 
suggests the use of matched asymptotic expansions. 

2.1. Outer expansion 
The main part of the channel, away from the sloping boundaries (1/p 4 z 4 
2 / a -  1/p) forms an outer region where the water depth is uniform. Katsis & Akylas 
( 1 9 8 7 ~ )  have already developed an asymptotic theory for long waves excited by a 
pressure distribution moving at  transcritical speed on water of uniform depth ; so the 
analysis in the outer region follows closely their analysis, and only the main results 
will be highlighted here. 

At  transcritical Froude number, F = 1 + Ap2 ( A  = 0(1)),  waves evolve on the ‘slow’ 
time T = p2t owing to weak nonlinear, dispersive and three-dimensional effects, 
which are taken to be equally important. To include nonlinearity and dispersion at  
the same order, the choice E = p2 is made; furthermore, a balance with three- 
dimensional effects is achieved by introducing the stretched (outer) spanwise 
variable 2 = EZ, so that waves propagate predominantly along the x-direction. Based 
on these scalings, three-dimensional effects are expected to become appreciable when 
the channel is sufficiently wide, such that the extent of the outer region, in terms of 
2, is O(1): 

(1)  = O(e)  or W = e-  = O(1). 

Now, in terms of the scaled coordinates, Laplace’s equation for 4 and the bottom 

W 

ho 

boundary condition at  y = - 1 give 

€ e2 €2 
4 h  2, T; Y )  = fk, 2, T) --z (Y+ l)”,, +z (9 + 1 ) 4 f z z z , - z  (Y + l)2fzz + . . . . (2) 

The free-surface boundary conditions at  y = €7 then imply that f is related to 7 
through 

and 

(3) 

‘ITz+~rzz-~(’12),,-~,,,,-~zZ = &,, (0 < 2 < 2W). (4) 

‘I = -f, + 4  -P +if,,, -fT - hf, -if,”) + 0(e2), 

satisfies the forced KP equation: 

In order to complete the formulation in the outer region, one needs to supplement 
(4) with boundary conditions at  2 = 0,2  W. The appropriate boundary conditions 
will be obtained by matching the flow near the sidewalls with the outer flow. In 
preparation for this matching, it follows from (2), (3) that the inner limit of the outer 
flow as Z + O +  is 

(5 a) 

T - --f,(X>O, T)+E(~,,,--f,z-f,-hf,-af,2)+O(E2); (5b) 

4 f (x ,  0, T) + E(Zfz-i(Y + 1 l2fZZ) + 0 ( E 2 ) ,  

for simplicity, it has been assumed that p(x,Z) is localized close to the channel 
centreline (2 = W), and, thus, makes no contribution to ‘I in (56) .  
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2.2. Inner expansion 
It turns out that the form of the inner expansion and the resulting boundary 
conditions depends on the magnitude of the slope parameter p. In particular, if 
p = 0(1), the extent of the inner region is O(h,), which is small compared with both 
the channel width 2w and the typical wavelength 1. On the other hand, if p = O(d) ,  
the extent of the inner region is now comparable with I (but still small compared 
with 2w) ; so, on physical grounds, one would expect that in the latter case, the outer 
flow will be affected more seriously by the details of the depth variation close to the 
wall, and this should show up in the corresponding boundary conditions. Here, we 
shall confine our attention to p = 0(1) which is appropriate for comparing with 
the experiments of Sandover & Taylor (1962) ; the case j3 = O(&) is discussed in 
the Appendix. 

For p = 0(1), the appropriate inner spanwise variable is z in the region close to the 
sidewall as 2 -+ O + .  The governing equation is Laplace’s equation 

&+$yy+$22 = 0 (-h(z) < Y < 032 > 01, (6) 

$y = ~(7z+$,72-$yy7)  (Y = 01, ( 7 4  

$z+7+t ($:+$,” )  = -E($T+h$z+~~+~l($:+$22)y+rl$Z,) (Y = 01, ( 7 b )  

subject to the free-surface boundary conditions, correct to O(E) ,  

the bottom boundary condition 

$,+h,$, = 0 (Y = -h(z)), 

and the matching conditions (5a, b )  as z-+ 00. 

Expanding $ and 7 in powers of E ,  

$ = $o+E$1+“$2+ ..., 7 = ~ o + E ~ 1 + E 2 ~ 2 +  ...) 
and substituting into (6)-(8), a hierarchy of linear problems is obtained. To 0(1), 
taking into account (5a, b) ,  it is readily found that q50 =f(x, 0, T), ?lo = -f&, 0, T ) .  
Proceeding to O(E) ,  we write 

$1 = zfz-3?/+ w f , , + u  (2 = 01, (9) 

so that u satisfies 
u ~ ~ + u ~ , = O  (-h(z) < Y < O , Z > O ) ,  

uy = 0 (y = O ) ,  

u y  = (1-h).ff,,-h,fz (Y = -h(z)), 

and, in view of (9), the matching condition (5a)  becomes 

u-to ( x - t c o ) .  (12) 

The boundary-value problem for u, consisting of Laplace’s equation (10) subject to 
the Neumann conditions (11) and the matching condition (12), has a solution if the 
compatibility condition 

f z , ~ ( l - h ) d z - f z ~ o m h , d z = O  0 ( Z = O ) ,  

which follows from Green’s theorem, is satisfied ; or, in terms of 7 = -f, + O(E) ,  

l;lz = J h m  (2 = 01, (13) 
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d = l0*(l-h)dz 

is the area under the depth profile in dimensionless variables. Condition (13) ensures 
that matching between the inner and outer flow is possible. Now the formulation of 
the outer flow is complete ; it consists of the forced KP equation (4) subject to the 
boundary condition (13) a t  the two sidewalls, 2 = 0 ,2W.  Note that the outer flow is 
insensitive to the exact geometry of the sidewalls; of course, if the sidewalls are 
vertical, d = 0 and the familiar no-flux boundary condition used by Katsis & Akylas 
(1987a), is recovered. 

It is worth noting that the propagation of long waves along a sloping beach (with 
p = O(1)) can be discussed as a special case of the present formulation; the K P  
equation (4) applies in Z > 0 and the boundary condition (13) holds a t  Z = 0. In 
particular, linear sinusoidal wave modes (in the absence of forcing, p = 0, h = 0 ) ,  

7 = H(Z)exp[i(kz+wT)], 

satisfy H,,+v2H = 0 (2 > 0 ) ,  

where v2 = 2k(w+ik3),  subject to the boundary conditions 

H, = - k 2 d H  (2 = 0 )  

and H bounded as 2+ 00. This boundary-value problem 
solutions : for 

there is an edge-wave mode (H+O as Z+ a), 

w = -1k3 1 
2 ( 5 + d 2 ) >  

H = exp ( - k 2 d Z ) ;  

for H has two kinds of 

(14) 

in addition, for w > -ik3 there is a continuous spectrum representing the obliquely 
incident and reflected waves a t  the beach: 

V 
H = sinvZ--cosvZ. 

k 2 d  

We remark that the dispersion relation (14) is in agreement with the earlier work of 
Grimshaw (1974), who studied linear long edge waves in an ocean of finite depth. 

3. Undular bore 
Suppose that, in an infinitely long, uniform channel, there is a gate that separates 

water a t  two different levels on either side. If the gate is suddenly removed, water 
advances into the region of lower'depth forming a bore. It has been observed 
experimentally that, when the ratio of initial water depths exceeds a threshold value 
(of about 1.28), the resulting bore is short and turbulent, while below this threshold, 
it is laminar and consists of undulations (see, for example, Lighthill 1978, 52.12). In 
the latter case, one can use long-wave theory to describe the development of a bore 
because the undulations are long compared with the water depth. In a channel with 
rectangular cross-section, where the waves are straight crested, KdV theory predicts 
that an undular bore ultimately develops into a train of cnoidal waves of slowly 
varying amplitude and period, the leading wave being a solitary wave (Peregrine 
1966; Fornberg & Whitham 1978). Three-dimensional bores were studied in the 
laboratory by Sandover & Taylor (1962) in channels with trapezoidal cross-sections. 
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Here, data from their experiments are used to make some comparisons with 
theoretical predictions based on the asymptotic theory presented earlier. 

The formulation of the bore problem follows as a special case of the discussion in 
$2. As there is no forcing, we set p = A = 0 in (4); furthermore, assuming that the 
channel is symmetric, it suffices to consider half the channel, 0 < Z < W, and in 
addition to the boundary condition (13) a t  Z = 0, impose a symmetry condition a t  

(15) 

Tz = dy,, ( Z  = 01, (16a) 

T z = O  ( Z =  W ) .  (16b) 

q(x ,  2, T = 0) = 0 ( X  < 0) ,  q(x,  2, T = 0) = qoo (z 2 0 ) ,  (17a) 

q + O  (x+-co,T>O), q - + ~ o o  ( X + C O ,  T > O )  (17b) 

z =  w: 3 2  7T,-a(T ~ z , - ~ T , z x z - ~ z z  = 0 (-m < x < < z < W), 

The appropriate initial conditions are 

while far upstream and downstream the conditions 

apply, where qm is the initial difference in water levels. 
The KP equation was solved numerically using the explicit, conditionally stable 

finite-difference scheme of Katsis & Akylas (1987a) with grid size Ax = 0.07, 
A 2  = 0.021 and time step AT = 0.5 x lop4. The boundary conditions (16) were 
approximated by centred differences in the x- and one-sided differences in 
the Z-directions. The upstream and downstream conditions (170) were applied a t  
the end points of the computational domain. Special care was taken that the finite 
extent of the computational domain did not affect the results reported here. In 
particular, from (15) and (16) together with mass conservation, it follows that 

is these calculations, the above constraint was satisfied to within 3%. 
Sandover & Taylor (1962) conducted their experiments in channels with 

trapezoidal cross-sections, keeping the width at the bed constant a t  12 in. while the 
sidewalls were supported a t  various angles 8 to the vertical ; also the still-water depth 
was kept constant a t  3 in. Thus, in terms of 8, the parameter d is given by 

d = t tan 8. (19) 

Wave-height measurements were taken for a range of different discharges, using 
gauges which were located a t  several points across the channel at  a distance 48 ft. 
from the inlet. The initial discharge Q ,  as measured in the laboratory, made 
dimensionless with cohi, is related to the theoretical parameters qm,  d ,  W and E 

(20) 
through 

The parameter e is specified by normalizing the dimensionless channel width a t  the 
free surface, 2W, to be equal to unity; from (1) and the cross-section geometry, one 
then has 1 

Q = 2W(qm+$€q3-eqrnd. 

I 
€ =  

2(2 + tan 8) ' 

Numerical computations were carried out for two sidewall inclinations 8 = in, in. 
Using (19), (21), it is found that the corresponding values of d are 0.5, 0.866 and 
those of e are 0.167 and 0.134. Figures 2 (a )  and 2 (b),  respectively, show perspective 
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FIGURE 2. Computed free surface at the head of undular bores in sloped-wall channels. (a)  Sidewall 
slope 6 = in, water-level difference vm = 1.08, time T = 12.5; ( b )  6 = in, roo = 1.13. T = 9.5. 
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FIQURE 3. Comparison of the theoretical predictions of wave height of the leading crest (at the 
channel centreline) of undular bores, with the laboratory measurements of Sandover t Taylor 
(1962) for two sidewall inclinations 8:  --, theory, 8 = in; 0,  experiment, 0 = an; -, theory, 
0 =in; 0,  experiment, 8 =in, 

views of the computed free surface for 0 = in with qoo = 1.08, and for B = in with 
qoLl = 1.13, which correspond to the same value of Q = 1.13 (this gives a discharge 
of 90 gals/min), according to (20). In  both cases, these snapshots are taken as the 
leading crest of the bore crosses the streamwise position at which the gauges were 
placed in the experiment; the corresponding times turn out to be T = 12.5,9.5, 
respectively. The three-dimensional structure of the bore is quite evident, and there 
is, a t  least qualitatively, a resemblance to the photographs from the experiments of 
Sandover & Taylor (1962) : wave crests are curved across the channel and steeper 
close to the sidewalls, where wave breaking is more likely to occur; some of the 
individual wave undulations tend to form a double-hump structure, having two 
crests separated by a shallow trough in the middle. Also it is interesting to note that 
changing d from 0.5 to 0.866 causes the wave pattern to become more uniform ; this 
feature will be discussed more thoroughly later (see § 5 ) ,  in connection with waves of 
permanent form. 

Turning now to a quantitative comparison of theory with experiment, figure 3 
shows a plot of the leading-wave-crest height at the channel centreline as a function 
of Q. For both values of 8, the theoretical predictions are in good agreement with 
experiment, until Q is large enough for wave breaking to occur in the experiment, 
which is, of course, not taken into account in the theory; wave breaking was first 
observed a t  Q x 1.5 for 0 = 3 and at Q x 1.15 for 8 = in, as is evident from the 
sudden dip of the experimental data points in figure 3, near those values of Q .  Figures 
4 ( a )  and 4 ( b )  show comparisons of the theoretical with the experimental profiles of 
the leading wave crest along the channel centreline, for B = fi,$, respectively, and 
at the same Q = 1.13. Again, the agreement between theory and experiment is very 
good ; in fact, this provides a rather severe test of the theory because, as is clear from 
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FIGURE 4. Comparison of predicted profiles of the leading waves (along the centreline) of undular 
bores with those measured by Sandover & Taylor (1962): -, theory; +, experiment. 
(a) e = in, T = 12.5; ( b )  0 = AX, T = 9.5. 

experimental observations, changing 8 from i x  to +r alters the wave profile quite 
significantly. In addition, it should be kept in mind that, in the experiments of 
Sandover & Taylor (1962), the channel geometry does not suggest a very thin 
boundary region with a wide core region, as postulated in the model - the values of 
E are only moderately small. On the other hand, the good agreement between theory 
and experiment indicates that the channel is wide enough for three-dimensional 
effects t o  be important. 
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4. Upstream response due to transcritical forcing 
We now turn our attention to the wave pattern generated by a pressure 

distribution moving a t  transcritical speed (F z 1) .  As already indicated, for a 
channel with vertical sidewalls, it is now known (see Wu 1987; Akylas 1988 and 
references given there) that, regardless of the shape of the forcing, there is a strong 
upstream response which consists of a uniform train of straight-crested KdV solitary 
waves; of course, it is the presence of vertical sidewalls that allows these particular 
waves to form, and in the context of the present model, it  is of interest to examine 
the extent to which the upstream disturbance is affected by sloping sidewalls. 

The pressure distribution is assumed to move along the channel centreline and is 
taken to have a Gaussian form along 5 and to be localized in the spanwise direction : 

p ( z , z )  = dpoexp(-x2)S(Z-W), (22) 

where p, is a constant and S is the Dirac delta function. Assuming, furthermore, that 
the channel is symmetric and the forcing is turned on impulsively, (a), (13), (22) then 
lead to the following initial-boundary-value problem : 

1 1 
rlTs+~ll,,-~(r12),s-BTsszs-frZZ = 0 ( -  < x < 0090 < z < W ) ,  (23) 

T z  = d q , ,  (2 = 01, (24a) 

(24b) 

q = O  ( T = O ) .  (25) 

T z  = &+Po (exp ( - x2)),, (2 = W ) ,  

The above problem is solved numerically using the method of Katsis & Akylas 
(1987a) with the same resolution as in the bore problem discussed in $3, and by 
normalizing the channel width 2W to unity. Again, the constraint (18), which ensures 
mass conservation, was satisfied to within a few percent. 

Numerical computations indicate that the nature of the upstream response 
depends crucially on the value of d.  For small d ( x  O . l ) ,  the individual upstream 
waves remain straight while wave crests climb and troughs dip near the sidewalls, as 
expected from the wall condition (24a). On increasing d further, the upstream wave 
disturbance loses its periodic appearance entirely and becomes highly disordered, 
Figure 5 (a) shows the response for d = 0.5 (p, = 10, h = - 0.5) a t  T = 4. Note that 
the individual waves are quite different from each other and there are large spanwise 
variations. However, for values of d around 1, the upstream wavetrain is still fully 
three-dimensional but, quite remarkably, it regains its uniform structure, as 
indicated in figure 5(6)  for d = 1 (po = 10, h = - 1) at T = 4; each of the upstream 
waves now has sharp crests a t  the walls that split into two humps towards the 
centreline, and the troughs are nearly flat and broad. We remark that a similar 
tendency for the wave pattern to become more regular was also observed in the 
development of a bore, when at' was changed from 0.5 to 0.866. 

5. Waves of permanent form 
As remarked earlier, in a channel with vertical sidewalls, there is a close relation 

between the development of an undular bore and periodic waves of permanent form 
(cnoidal waves), which, in fact, can be used to construct approximate solutions based 
on modulation theory (Gurevich & Pitaevskii 1974; Fornberg & Whitham 1978) ; this 
also turns out to be the case for the upstream response due to near-resonant forcing, 
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FIGURE 5. Upstream waves excited by transcritical forcing in sloped-wall channels, at T = 4 
and p ,  = 10: (a) .nf = 0.5, A = -0.5; ( b )  .nf = 1.0, A = -1.0. 
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as pointed out recently by Smyth (1987). Accordingly, in order to gain some insight 
into these wave phenomena in the presence of sloping sidewalls - in particular the 
crucial dependence on d noted in $83, 4 - here we look for periodic waves of 
permanent form. To this end, 7 is assumed to depend on f = x + cT, c being the phase 
speed, and on using (4) (with p = 0, h = 0) ,  (13) and taking the channel to be 
symmetric, one has 

7 z  = d 7 n  ( Z  = O ) ,  (27 a)  

q z = 0  ( Z =  W ) ,  (27b) 

where 2Eo is the period; furthermore, the water depth is fixed by setting q(f  = Eo,  
Z = 0) = 0. When d = 0, cnoidal waves with no 2-variations are solutions of the 
above system, and the KdV solitary wave is obtained as a limiting case as the period 
is increased. Our goal here is to examine the effect of d on these known 'wave 
solutions. 

5.1. Numerical results 
Equations (26) and (27) are solved numerically using a combination of spectral and 
finite-difference methods. Assuming that waves are symmetric about E = 0, 
Fourier, spectral differentiation is used to calculate derivatives with respect to E,  
while derivatives with respect to Z are approximated by second-order finite 
differences. Thus for given values of the speed c,  slope parameter d, and half-period 
to, equation (26) and the boundary conditions (27) yield a nonlinear algebraic system 
for the unknown values of 7 at the grid points, which is solved through Newton's 
method. As a check, these numerical solutions were verified against results obtained 
independently from a second technique, using a shooting procedure. The basis for 
discretization is the same as in the first method - Fourier expansion in 6 and second- 
order, finite differences in 2; but the desired solution is found by starting with 
guessed values for 7 at the centreline Z = W ,  where (27b) is applied, and then 
marching along lines of constant f towards the sloping wall at Z = 0. The assumed 
values of 7 at Z = Ware systematically corrected through Newton iteration and the 
marching procedure is repeated until the wall condition (27a) is also met. 
Furthermore, for periodic waves, the constraint analogous to (18) is that 

is independent of 2; the numerical solutions were checked against this constraint. 
Starting with the known cnoidal-wave solution at  d = 0, continuation in d was 

used to compute solution families for d > 0 and for a range of phase speeds, 
0.5 < c < 2.5 (the upstream waves shown in figure 5 ( b )  travel with a speed of, 
approximately, 2.5). The channel width 2W is normalized to unity in all cases 
discussed below, though the waves seem to be relatively insensitive to changes in W .  
The period 2f0 is taken to be 27c; cnoidal waves having this period and 0.5 < c < 2.5 
appear essentially as a series of KdV solitary waves, with very little interaction 
between individual crests. Numerical computations indicate that, as the speed c is 
increased for fixed d,  the wave structure remains qualitatively the same but, as one 
would expect, wave crests become steeper and three-dimensional features such as 
crest curvature, both in plan and elevation, become more pronounced. On the other 
hand, varying d gives rise to more dramatic effects : for small values of d > 0, there 
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FIGURE 6. Periodic waves of permanent form of period 2&, = 2x, speed c = 2.5 and channel 
width 2W = 1. (a) d = 0.5. ( b )  d = 1.0. 

appear small oscillatory tails and the crest acquires a depression near the centreline. 
Figure 6 (a )  shows a ,perspective view of the free surface corresponding to c = 2.5 and 
d = 0.5, a t  which point these effects have become quite strong and the wave has a 
fairly complicated three-dimensional structure. With further increase in d ,  however, 
the oscillations a t  the tails tend to subside resulting in broad, nearly flat troughs for 
values of d around 1, as shown in figure 6 ( b ) .  These computations were carried 
out using a resolution of 33 grid points in 0 < 6 < n ;  in the spanwise direction, 
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0 < Z < 0.5, 31 grid points were used in the first case, and 21 points in the second 
case. 

Based on the above numerical calculations of steady waves, it is now possible to 
explain certain features of the unsteady wave patterns noted earlier. In particular, 
there is a striking similarity between the waves with the double-hump structure 
found in the upstream response for d = 1 (see figure 5 b ) ,  and the steady waves 
shown in figure 6(b) for the same value of d.  Figure 6(b) also suggests that there is 
little interaction between waves in neighbouring periods, so that each of these waves 
is expected to propagate more or less as a separate entity; the upstream response 
shown in figure 5 ( b ) ,  which consists of a series of these waves, seems to support this 
claim. On the other hand, the relatively non-uniform appearance of the upstream 
response for d = 0.5 (see figure 5a)  is probably due to the large spanwise variations 
a t  the tails of the steady waves shown in figure 6(a), which cause individual waves 
to interact in a complicated way. The same reasoning also seems to provide an 
explanation for the more uniform appearance of the undular bore for d = 0.866 as 
compared to that for d = 0.5 (figure 2a, b).  

A question that has not been addressed so far, is whether solitary waves exist for 
d > 0. Assuming that solitary waves can be obtained from periodic waves in the 
limit that  the wave period becomes large, one could use continuation in to to search 
for possible solitary waves numerically ; this is a computationally expensive task 
and will not be pursued here. Another approach is to use perturbation theory for 
d Q 1, as discussed below. 

5.2. Perturbation theory for d < 1 
Assuming that d 4 1, r j  is expanded in powers of d :  

where y(O) is the KdV solitary wave, 

with 

Upon substitution of (28), (29) into (26), (27), it is found that ~ ( l )  satisfies a linear 
inhomogeneous problem. It proves convenient to write 

so that ij' satisfies a problem with homogeneous boundary conditions : 

qz = 0 (2 = 0, W), (31) 

where 

The solution of (30), (31) is posed as a Fourier series 

nxZ  
?j = G(") ( t )  cos- 

m 

n=o W 
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which meets the boundary conditions (31) automatically. The Fourier coefficients are 
to be determined by solving a sequence of ordinary differential equations : 

where 

and 

Furthermore, for y to remain localized in the x-direction, we require 

G(n)(& + 0 (t+ k co) 
for all n. 

Now the solution of (32) subject to (33) can be readily found for n = 0:  

6W 1 
Q(O) = pa:(3S'-2S2) +-(S2-a&S2), W 

(33) 

(34) 

where S = sechat, R = tanha& The last term in (34) is secular and makes the 
expansion (28) non-uniform as t+ k co ; however, noting that 

a 
- (aoS2) = S2-a@S2, 
aa0 

this non-uniformity can be interpreted as a slight change in the amplitude, a,, of the 
KdV solitary wave (29). On the other hand, we argue that, in general, one cannot find 
a solution of (32) that satisfies (33) for n 2 1 : as 161 --f 00, the four homogeneous 
solutions of (32) behave like 

exp ( k q6), exp ( k irE), (35) 

where , r2 =-3c+  9c2+3 - , [ (3" 
and only one of these solutions is consistent with (33). Accordingly, in order to find 
a smooth solution of the inhomogeneous equation (32), one needs to include a 
contribution from the homogeneous solutions (35) with oscillating behaviour as well, 
thus violating (33). Therefore, it is concluded that no solitary waves are possible for 
d Q 1 ; this seems to be consistent with our numerical calculations which indicate 
that small-amplitude oscillations, owing to cross-modes corresponding to 2 1 in 
(32), appear at  the tails when d is small. It is interesting to note that, in this respect, 
there is an analogy with long-wave propagation in a slowly rotating channel: solitary 
waves do not seem to exist in this case either, owing to the radiation of Poincar6 
waves which are the corresponding cross-modes (Katsis & Akylas 19876; Melville, 
Thomasson & Renouard 1989). Of course, as the perturbation theory is expected to 
be valid only for d 4 1,  it is still possible that solitary waves may exist for other 
parameter values; for example, figure 6(b) suggests that perhaps such waves could 
be found for values of d around 1. 

This work was supported by the Office of Naval Research under project NR062- 
742 and by the National Science Foundation Grant MSM-8451154. 
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Appendix. Wall boundary condition for p = O(&) 

When /3 = O(d) ,  the analysis presented in $2.2 needs to be modified. Here we 
sketch the main steps in the inner expansion, which lead to the wall boundary 
condition, appropriate in this case. 

Focusing attention on the inner region Z+O+,  the rigid bottom is at y = -h(z”), 
where z” = dz is the inner spanwise coordinate. In terms of the inner variables, the 
governing equations, correct to O(E),  are 

4$zz+$ iz )+$yy  = 0 ( - h  < y < o,z”> 01, (A 1) 

$y = E(rlz-#vyrl) (Y = 01, (A 2a) 

# z + s + t # ;  = -B(#T+h#z+a~~+rl$y#yy+rl#z,) (Y = O ) ,  (A 2b)  

#v = -Ehi$i (TJ = -h(Z)), (A 3) 
together with the matching conditions (5a, b )  as z”+ CQ. To solve this problem we 
write 

and upon substitution into (A 1)-(A 3), it is found that w satisfies 

$ = X(X,Z,T)-€v(z ,y ,Z ,T)+ ..., 

vyY = x X x + x i ~  ( - h  < y < O , z ” >  0 ) ,  (A 4) 

vy = xzz (Y = 01, (A 5 )  

vY = hixi (y = -h(z“)). (A 6) 

x -f+&& (2 = o,z+ a), (A 7 4  

v N $(y+ l)”f,z-~x”f,z (2 = O,Z+ 00). (A 7 b )  

In addition, the matching condition (5a )  implies 

The solution of (A 4)-(A 6 ) ,  consistent with (A 7 b ) ,  is 

v = t ( Y +  ~ ) 2 x z x + ~ 2 x i i - ~ v z z ~  

(hXi)i+ (h -  1) xzz = 0 (z” > 0). 

subject to the compatibility condition 

(A 8) 
Note that h = 0 at the shoreline z“ = 0, so that in general, solutions of (A 8) are 
expected to be singular there ; requiring that x is regular at z” = 0 and imposing the 
matching condition (A 7 a )  determine the desired boundary condition at  Z = 0 for the 
outer flow. The details depend on the specific depth profile h(E) ; here we work out the 
particular case of exponential depth variation, 

h ( ~ )  = i-ee-i. (A 9) 
Taking Fourier transforms in z, the solution of (A 8) is 

00 

x = JPrn R(k; z“, T )  eikzdk, 

(A 10) 
where 2 satisfies 

Now, for the exponential depth profile (A 9), the solution of (A 10) that is regular at 
z” = 0 can be related to hypergeometric functions (Ball 1967), and its asymptotic 
behaviour as 2-t  oc) is found to be 

(h&)z+ k2(h- 1)R = 0 (z” > 0). 

a - D(1 -K(k )  Z) (Z-t a), (A 11) 
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where D is an as yet unspecified constant, and 
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1 
K(k)  = 

2Y + $(a+) + $b-) ' 
here $ is the digamma function (Abramowitz & Stegun 1964, p. 258), y is Euler's 
constant, and 

a, = $++(i +4k2$. 

Comparing (A 1 1 )  with (A 7a), matching is achieved if 

&fz+K(k)fl= 0 (2 = 0) ,  (A 1-21 
or, equivalently in terms of 7 = - f, + O(s) ,  if 

ei7z+ K(k) ijeiXxdk = 0 (2 = 0). L 
So, when p = O ( d ) ,  the wall boundary condition takes the integral-differential form 
(A 13). Note that dropping the O(&)-term in (A 12), (A 13) is inconsistent close to the 
zeros of K ( k )  a t  

these are the cut-off wavenumbers of edge-wave modes found by Ball (1967). Finally, 
we remark that the form of the boundary condition (A 13) remains valid for any 
depth variation h(z"), but the function K(k)  depends on the particular depth profile. 

k = + (m(m+ 1)); (m = 1,2,3,  ...); 
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